Targeted SERCA2a gene expression identifies molecular mechanism and therapeutic target for arrhythmogenic cardiac alternans.

نویسندگان

  • Michael J Cutler
  • Xiaoping Wan
  • Kenneth R Laurita
  • Roger J Hajjar
  • David S Rosenbaum
چکیده

BACKGROUND Beat-to-beat alternans of cellular repolarization is closely linked to ventricular arrhythmias in humans. We hypothesized that sarcoplasmic reticulum calcium reuptake by SERCA2a plays a central role in the mechanism of cellular alternans and that increasing SERCA2a gene expression will retard the development of cellular alternans. METHODS AND RESULTS In vivo gene transfer of a recombinant adenoviral vector with the transgene for SERCA2a (Ad.SERCA2a) was performed in young guinea pigs. Isolated myocytes transduced with Ad.SERCA2a exhibited improved sarcoplasmic reticulum Ca(2+) reuptake (P<0.05) and were markedly resistant to cytosolic calcium alternans (P<0.05) under repetitive constant action potential clamp conditions (ie, when alternation of action potential duration was prevented), proving that sarcoplasmic reticulum Ca(2+) cycling is an important mechanism in the development of cellular alternans. Similarly, SERCA2a overexpression in the intact heart demonstrated significant resistance to alternation of action potential duration when compared with control hearts (heart rate threshold, 484+/-25 bpm versus 396+/-11 bpm, P<0.01), with no change in action potential duration restitution slope. Importantly, SERCA2a overexpression produced a 4-fold reduction in susceptibility to alternans-mediated ventricular arrhythmias (P<0.05). CONCLUSIONS These data provide new evidence that sarcoplasmic reticulum Ca(2+) reuptake directly modulates susceptibility to cellular alternans. Moreover, SERCA2a overexpression suppresses cellular alternans, interrupting an important pathway to cardiac fibrillation in the intact heart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heart Failure Targeted Sarcoplasmic Reticulum Ca ATPase 2a Gene Delivery to Restore Electrical Stability in the Failing Heart

Background—Recently, we reported that sarcoplasmic reticulum Ca ATPase 2a (SERCA2a), the pump responsible for reuptake of cytosolic calcium during diastole, plays a central role in the molecular mechanism of cardiac alternans. Heart failure (HF) is associated with impaired myocardial calcium handling, deficient SERCA2a, and increased susceptibility to cardiac alternans. Therefore, we hypothesiz...

متن کامل

Atrial SERCA2a Overexpression Has No Affect on Cardiac Alternans but Promotes Arrhythmogenic SR Ca2+ Triggers

BACKGROUND Atrial fibrillation (AF) is the most common arrhythmia in humans, yet; treatment has remained sub-optimal due to poor understanding of the underlying mechanisms. Cardiac alternans precede AF episodes, suggesting an important arrhythmia substrate. Recently, we demonstrated ventricular SERCA2a overexpression suppresses cardiac alternans and arrhythmias. Therefore, we hypothesized that ...

متن کامل

SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition.

Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca(2+)ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycylin...

متن کامل

Targeted antioxidant treatment decreases cardiac alternans associated with chronic myocardial infarction.

BACKGROUND In myocardial infarction (MI), repolarization alternans is a potent arrhythmia substrate that has been linked to Ca2+ cycling proteins, such as sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), located in the sarcoplasmic reticulum. MI is also associated with oxidative stress and increased xanthine oxidase (XO) activity, an important source of reactive oxygen species (ROS) in the sarcopl...

متن کامل

O-3: Drug Repositioning by Merging Gene Expression Data Analysis and Cheminformatics Target Prediction Approaches

The transcriptional responses of drug treatments combined with a protein target prediction algorithm was utilised to associate compounds to biological genomic space. This enabled us to predict efficacy of compounds in cMap and LINCS against 181 databases of diseases extracted from GEO. 18/30 of top drugs predicted for leukemia (e.g. Leflunomide and Etoposide) and breast cancer (e.g. Tamoxifen a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation. Arrhythmia and electrophysiology

دوره 2 6  شماره 

صفحات  -

تاریخ انتشار 2009